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Abstract. In this note we study the zeros of solutions of differential equations of

the form u
′′ + pu = 0. A criterion for oscillation is found, and some sharper forms of

the Sturm comparison theorem are given.

§1. Number of zeros.

Consider the linear differential equation

u′′(x) + p(x) u(x) = 0 , where p(x) =
1

(1 − x2)2
, (1)

on the interval −1 < x < 1. Two independent solutions are

√

1 − x2 and
√

1 − x2 log
1 + x

1 − x
,

so it is clear that no solution of the differential equation (1) can vanish more than
once in the interval (−1, 1), unless it vanishes identically. This property was a key
to Nehari’s study of sufficient conditions for univalence of an analytic function in
the unit disk [6,7,8].

The function p(x) in (1) has a remarkable feature. If the differential equation is
perturbed to u′′ + Cpu = 0 for an arbitrary constant C > 1, then every solution
has infinitely many zeros in (−1, 1). Indeed, if we write C = 1 + δ2, then a pair of
linearly independent solutions is given by

√

1 − x2 cos

(

δ

2
log

1 + x

1 − x

)

and
√

1 − x2 sin

(

δ

2
log

1 + x

1 − x

)

, (2)

from which our statement follows.
This curious phenomenon, the abrupt change in behavior of solutions as C passes

through the value 1, seems to call for closer inspection. By symmetry, it suffices
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to study solutions over the interval [0, 1). It is natural to consider a differential
equation of the form

u′′(x) +
1 + σ(x)

(1 − x2)2
u(x) = 0 , 0 ≤ x < 1 , (3)

where σ(x) is a positive continuous function with limx→1− σ(x) = 0, and to ask
what asymptotic behavior of the function σ(x) gives rise to solutions with finitely
or infinitely many zeros in the interval [0, 1). The following theorem gives a fairly
complete answer.

Theorem 1. Let σ(x) be a positive continuous function on [0, 1) with σ(x) → 0 as

x→ 1. Let

λ = lim inf
x→1

(

log
1

1 − x

)2

σ(x) , Λ = lim sup
x→1

(

log
1

1 − x

)2

σ(x) .

(i) If λ > 1, then each solution of (3) has infinitely many zeros in [0, 1).
(ii) If Λ < 1, then each nontrivial solution of (3) has at most a finite number

of zeros in [0, 1).
(iii) If λ ≤ 1 ≤ Λ, then the number of zeros may be finite or infinite.

It should be remarked that if one nontrivial solution of a differential equation
u′′ + qu = 0 has infinitely many zeros, then all solutions do. This is an immediate
consequence of Sturm’s classical theorem on the interlacing of zeros of any pair of
independent solutions. (See for instance [1], Chapter 2.)

Before discussing the proof of Theorem 1, we want to give an application. A
Nehari function is a positive continuous even function p(x) on the interval (−1, 1)
for which (1 − x2)2p(x) is nondecreasing on [0, 1) and the differential equation
u′′ + pu = 0 has a nonvanishing solution on (−1, 1). Nehari functions arise in
connection with Nehari’s general univalence criterion [7], expressed in terms of the
Schwarzian derivative. Examples are p(x) = (1 − x2)−2, p(x) = 2(1 − x2)−1, and

p(x) = π2/4, with respective nonvanishing solutions u =
√

1 − x2. u = 1 − x2, and
u = cos(πx/2). For any Nehari function, it is clear that the index

µ = lim
x→1−

(1 − x2)2p(x)

exists and µ ≥ 0. It can be shown [2] that µ ≤ 1, and in fact that µ < 1 unless
p(x) = (1 − x2)−2. As a simple application of the Sturm comparison theorem, we
showed in [2] that for a constant C > 0 the solutions of u′′+Cpu = 0 have infinitely
many zeros in (−1, 1) if Cµ > 1 and finitely many if Cµ < 1. The case Cµ = 1
is indeterminate in general, but we can apply Theorem 1 to classify one special
example. For any parameter t in the interval 1 < t < 2, consider the function

p(x) =
t
(

1 − (t− 1)x2
)

(1 − x2)
2

.
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It is a Nehari function with nonvanishing solution u = (1 − x2)t/2 and index µ =
t(2 − t). Take C = 1/t(2 − t), so that Cµ = 1 and

Cp(x) =
1 + σ(x)

(1 − x2)2
, where σ(x) =

(t− 1)(1 − x2)

2 − t
.

Then the function σ(x) satisfies the requirements of Theorem 1, and λ = Λ = 0, so
solutions of the equation u′′ + Cpu = 0 can have only a finite number of zeros in
(−1, 1).

The proof of Theorem 1 is based on the following lemma.

Relative Convexity Lemma. Let p and q be continuous functions on an interval

[a, b), where b ≤ ∞. Let u and v be solutions of the respective differential equations

u′′+pu = 0 and v′′+qv = 0. Suppose that u(x) > 0 in [a, b) and define the function

F (x) =

∫ x

a

1

u(t)2
dt , a ≤ x < b . (4)

Then F is continuous and increasing on [a, b), and it maps this interval onto an

interval [0, ℓ), where 0 < ℓ ≤ ∞. Let G denote the inverse of F . Then the function

w(y) =
v(G(y))

u(G(y))
(5)

satisfies the differential equation

w′′(y) = [p(x) − q(x)] u(x)4w(y) , x = G(y) , 0 ≤ y < ℓ . (6)

In particular, if v(x) > 0 and p(x) ≤ q(x) on [a, b), then w′′(y) ≤ 0, so that the

function w is concave on the interval [0, ℓ).

The lemma is proved by straightforward differentiation. Details may be found
for instance in [2].

Proof of Theorem 1. It is easy to check that u(x) =
√

1 − x2 is a solution of the
differential equation (1) that does not vanish in [0, 1). The corresponding function
(4) is found to be F (x) = L(x), where

L(x) =

∫ x

0

1

1 − t2
dt = 1

2
log

1 + x

1 − x
, 0 ≤ x < 1 .

If v(x) is a solution of the equation (3), then the equation (6) for w reduces to

w′′(y) + h(y)w(y) = 0 , where h(y) = σ(G(y)) , 0 ≤ y <∞ . (7)
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We now use the Sturm comparison theorem (see [1], Chapter 2) to study the
zeros of w, which are the same as those of v after precomposition with G. We
compare (7) with the differential equation

W ′′(y) +
c

y2
W (y) , c > 0 , (8)

whose solutions, as we will see, begin to exhibit infinitely many zeros in [1,∞)
when c > 1

4
. Indeed, the function W (y) = yα solves the equation (8) provided

α(α− 1) + c = 0, so that linearly independent sets of solutions are

{yα1 , yα2} , α1 , α2 = 1

2
(1 ±

√
1 − 4c) , if c < 1

4
;

{√y ,√y log y} , if c = 1

4
;

{√y cos(β log y) ,
√
y sin(β log y)} , β = 1

2

√
4c− 1 , if c > 1

4
.

(9)

Infinitely many zeros occur only when c > 1

4
. By Sturm comparison, it then follows

that the solutions of (7) will have finitely many zeros in [1,∞) if

lim sup
y→∞

y2h(y) < 1

4

and infinitely many if
lim inf
y→∞

y2h(y) > 1

4
.

Since h(y) = σ(G(y)) and y = L(x), parts (i) and (ii) of the theorem follow. In
the next section we give some examples in support of (iii). �

In fact, the comparison theorem shows that only finitely many zeros occur if
L(x)2σ(x) ≤ 1

4
for all x < 1 sufficiently near the point 1.

Hartman [3] states a variant of Theorem 1 as an exercise (Chapter XI, Exercise
1.2). Hille ([4], p. 461) describes related results. In any event, we believe our
approach via the relative convexity lemma clarifies the issue and simplifies the
proof.

The theorem can be refined by further applications of the relative convexity
lemma. If L(x)2σ(x) → 1

4
, the solutions of (3) can be classified as oscillatory or

nonoscillatory according to the rate of approach. To be more precise, suppose that
y2h(y) = 1

4
+ τ(y), where τ(y) → 0 as y → ∞. Observe that ω(y) =

√
y is a

nonvanishing solution of y2ω′′(y) + 1

4
ω(y) = 0, and the corresponding integral (4)

is f(y) =
∫ y

1
1/s ds = log y, with inverse y = g(t) = et. Let w(y) be any solution

of y2w′′(y) + ( 1

4
+ τ(y))w(y) = 0, and define z(t) = w(et)/ω(et). By the relative

convexity lemma, z′′(t) + τ(et)z(t) = 0. As in the proof of the theorem, we see
that z(t) has finitely many zeros in (0,∞) if lim supt→∞

t2τ(et) < 1

4
and infinitely

many if lim inft→∞ t2τ(et) > 1

4
. Accordingly, this classifies the solutions of (3) with

L(x)2σ(x) = 1

4
+ τ(L(x)). Hille [4] and Hartman [3] describe similar refinements.
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We turn now to a second application of the relative convexity lemma. By way
of motivation, recall that p and q are continuous and p(x) < q(x) on [a, b), and if
u and v are respective solutions of u′′ + pu = 0 and v′′ + qv = 0 with the same
initial conditions at a, then by the Sturm comparison theorem, the first zero of v
must occur before that of u. More precisely, if u(x1) = 0 at some point x1 ∈ (a, b),
then v(x2) = 0 at some x2 ∈ (a, x1). However, if u(x) > 0 on [a, b) and u(x) → 0
as x→ b, the function v need not vanish anywhere in (a, b). For example, consider
on the interval [0, 1) the one-parameter family of functions

pt(x) =
t

(1 − x2)2
, 0 < t < 1 .

The solution ut to u′′ + ptu = 0 with initial conditions ut(0) = 1 , u′t(0) = 0 is

ut(x) = 1

2

√

1 − x2

{(

1 + x

1 − x

)γ

+

(

1 − x

1 + x

)γ}

, γ = 1

2

√
1 − t (10)

(cf. Kamke [5], page 492, formula 2·369). If 0 < t < s < 1, then pt(x) < ps(x) and
0 < us(x) < ut(x) for 0 < x < 1, yet us(1) = ut(1) = 0. The following theorem
tells us precisely when this kind of behavior can occur.

Theorem 2. Let p be a continuous function on an interval [a, b), where b ≤ ∞.

Let u be a solution of the differential equation u′′ + pu = 0 such that u(x) > 0 on

[a, b). In terms of u, define the function F as in (4). Let q be a continuous function

with q(x) ≥ p(x) but q(x) 6≡ p(x) on [a, b), and let v be the solution of v′′ + qv = 0
with the same initial data v(a) = u(a) and v′(a) = u′(a). Then in order that v
vanish at some point in (a, b) for every such choice of function q, it is necessary

and sufficient that F (x) → ∞ as x→ b.

Proof. Suppose first that F (x) → ∞ as x → b. Then F is an increasing function
that maps the interval [a, b) onto [0,∞). Let G = F−1 and consider the function
w(y) as defined in (5). Simple calculations show that w(0) = 1 and w′(0) = 0. But
if v(x) > 0 on (a, b), then w is a nonconstant concave function on [0,∞), by the
relative convexity lemma and the hypothesis that q(x) ≥ p(x) but q(x) 6≡ p(x). It
follows that w must vanish somewhere on (0,∞), because w(0) > 0 and w′(0) = 0.
Hence v vanishes somewhere on (a, b).

Conversely, suppose that F (x) → ℓ <∞ as x→ b. Then we will show that there
are permissible choices of the function q(x) ≥ p(x) for which the corresponding
solution v does not vanish on (a, b). Let q(x) = p(x) + r(x), where r(x) ≥ 0 but
r(x) 6≡ 0. Equation (6) then takes the form

w′′(y) + r(x) u(x)4w(y) = 0 , x = G(y) , 0 ≤ y < ℓ .

If we choose r so that r(x)u(x)4 ≤ π2/4ℓ2 , then by the Sturm comparison theorem,
the function w cannot vanish in the interval (0, ℓ), since the solution to W ′′ +
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(π2/4ℓ2)W = 0 with the given initial data is simply W (y) = cos(πy/2ℓ), which has
no zeros in (0, ℓ). Hence the corresponding solution v has no zeros in (a, b). �

The relative convexity lemma can also be applied to derive the solutions (2)
and (10) of the equation u′′ + Cpu = 0, where p(x) = (1 − x2)−2 and C > 1 or

0 < C < 1, given only the nonvanishing solution u(x) =
√

1 − x2 in the case C = 1.
Then the function (4) is again F (x) = L(x), and for any solution of v′′ + Cpv = 0
the differential equation (6) reduces to w′′ = (1−C)w. For C > 1 the last equation
has solutions w(y) = sin(δy) and cos(δy), where δ =

√
C − 1. For 0 < C < 1 it has

solutions w(y) = exp
(

±
√

1 − C y
)

. With the substitution y = F (x), this leads to
the expressions in (2) and (10).

§2. Examples.

Some examples will now be offered in support of the assertions in part (iii) of
Theorem 1. We show first that the condition λ < 1 does not prevent an infinite
number of zeros, even when Λ = 1.

We begin by constructing a function σ with λ = Λ = 1 for which the solutions
of (3) have infinitely many zeros. To define σ it suffices to construct the function
h(y) that occurred in the proof of Theorem 1, since σ(x) = h(F (x)). We do this in
such a way that on large disjoint intervals In ⊂ [0,∞), the function h has the form

h(y) =
cn
y2
, cn =

1

4
+

1

n2
.

The corresponding quantity β in (9) is equal to 1/n, so that if In = [an, bn] with
bn/an > enπ, then by Sturm comparison any solution of (8) will have a zero in In.
We construct the intervals I1, I2, . . . inductively so that an+1 > bn > enπan . On
the intervening intervals (bn, an+1) we extend the definition of the function h(y) by
linear interpolation. Then limy→∞ y2h(y) = 1

4
, so that λ = Λ = 1 and the solutions

of (3) have infinitely many zeros.
The preceding construction can be modified to give λ any value in the interval

(0, 1). For any prescribed number α with 0 < α < 1

4
, we can define h(y) as

a continuous function in such a way that in each of the intervals (bn, an+1) the
quantity y2h(y) dips below the value 1

4
with a minimum equal to α. Then

lim inf
y→∞

y2h(y) = α and lim sup
y→∞

y2h(y) = 1

4
.

Thus λ = 4α < 1 and Λ = 1, whereas the solutions of (3) have infinitely many
zeros.

Next we construct an example with λ = 1 and Λ > 1 arbitrarily prescribed, for
which some solution of the differential equation (3) vanishes only once in (0, 1).
Consequently, no solution can have more than 2 zeros. For any β in the inter-
val 1

4
< β ≤ ∞, it will be enough to construct a continuous function h(y) with

lim infy→∞ y2h(y) = 1

4
and lim supy→∞

y2h(y) = β such that some solution of the
6



equation (7) has only one zero in (0,∞). Let In = (an, bn) be disjoint intervals in
(1,∞), with bn < an+1 and an → ∞. Choose a sequence of numbers βn >

1

4
with

βn → β as n → ∞. On each interval In, let 1

4
≤ y2h(y) ≤ βn with y2h(y) = βn

at the midpoint, and set y2h(y) = 1

4
elsewhere in (0,∞). Outside the intervals In

the solutions to w′′ +hw = 0 have the form w(y) =
√
y(A+B log y), with different

values of the constants A and B in each component. Let w =
√
y(1 + log y) in

(0, a1] and write w =
√
y(An + Bn log y) for y ∈ [bn, an+1). For each n it is clear

that the differences |An+1 − An| and |Bn+1 − Bn| can be made arbitrarily small
provided the length bn − an is sufficiently small. Once a sequence {an} is chosen,
we can select the points bn inductively so that An, Bn >

1

2
and so that w remains

positive on In. Then w remains positive on [1,∞], and on the interval [0, 1] it will
vanish exactly once. Because w is concave when w(y) > 0, this will guarantee that
the solution remains positive on [1,∞). On the interval (0, 1) it will vanish exactly
once.

§3. An integral criterion.

Consider now the differential equation u′′(x) + p(x)u(x) = 0 on the real line
−∞ < x < ∞, where p(x) is an even continuous function. What properties of p
will ensure that every solution has a zero? The problem reduces to consideration of
the special solution with u(0) = 1 and u′(0) = 0. Indeed, this is an even function,
so if it vanishes once it will vanish twice, and then every other solution will vanish
somewhere in between, by Sturm’s theorem on the interlacing of zeros.

Hence it is enough to let p(x) be continuous on 0 ≤ x < ∞ and to ask whether
the solution with initial data u(0) = 1 and u′(0) = 0 vanishes somewhere on (0,∞).
This will certainly be true if p(x) > 0. Then u′′(0) < 0 and so u′(x) < 0 in some
interval (0, δ], and the solution is concave so long as u(x) > 0, so it must lie below
its tangent line constructed at the point (δ, u(δ)). This tangent line has negative
slope and so it cuts across the x-axis. Consequently, the solution u(x) must do the
same.

The following theorem says that the condition p(x) > 0 can be relaxed to require
only that the function have a positive integral. We adopt the notation

p(x)+ = max{p(x), 0} , p(x)− = max{−p(x), 0} ,
so that p(x) = p(x)+ − p(x)−.

Theorem 3. Suppose that p(x) is continuous on the interval [0,∞), and let u(x) be

the solution of the differential equation u′′ +pu = 0 with initial conditions u(0) = 1
and u′(0) = 0. If

∫

∞

0
p(x)−dx <

∫

∞

0
p(x)+dx ≤ ∞ , then u(x) = 0 at some point

x ∈ (0,∞).

Proof. Suppose, on the contrary, that u(x) > 0 throughout the interval (0,∞), and
consider its logarithmic derivative ϕ = u′/u. Then ϕ(0) = 0 and

ϕ′(x) =
u′′(x)

u(x)
−

(

u′(x)

u(x)

)2

= −p(x) − ϕ(x)
2 ≤ −p(x) .

7



Thus by hypothesis,

ϕ(x) =

∫ x

0

ϕ′(t) dt ≤ −
∫ x

0

p(t) dt =

∫ x

0

(

p(t)+ − p(t)−
)

dt < −ε

for some ε > 0 if x ≥ b0, a sufficiently large positive number. For x ≥ b0, consider
the function ψ = 1/ϕ = u/u′. A calculation gives

ψ′(x) = 1 − u(x)u′′(x)

u′(x)2
= 1 + p(x)ψ(x)

2 ≥ 1 − 1

ε2 p(x)
−

for b0 ≤ x <∞. Integration gives

ψ(x) − ψ(b0) ≥
∫ x

b0

(

1 − 1

ε2 p(t)
−

)

dt ≥ x− b0 − 1

ε2

∫ x

b0

p(t)− dt ,

which implies that ψ(x) > 0 for sufficiently large x, a contradiction. Therefore,
u(x) must vanish somewhere in the interval (0,∞). �

Applying Theorem 3 to the equation (6) with ℓ = ∞ and appealing to the relative
convexity lemma, we obtain the following result, where the integrals are written in
terms of the variable x = G(y).

Theorem 4. Let p and q be continuous functions on an interval [a, b), where

b ≤ ∞. Let u be a solution of u′′ + pu = 0 such that u(x) > 0 on [a, b) and
∫ b

a
1/u(x)2 dx = ∞, and let v be a solution of v′′ + qv = 0 with v(a) = u(a) and

v′(a) = u′(a). If

∫ b

a

(

q(x) − p(x)
)

−

u(x)2 dx <

∫ b

a

(

q(x) − p(x)
)+
u(x)2 dx ≤ ∞ ,

then v vanishes at some point in (a, b).

For example, let p(x) = 1/(1 − x2)2 and u(x) =
√

1 − x2 for x ∈ [0, 1). By
Theorem 4, the solution of

v′′(x) +

(

1

(1 − x2)2
+ r(x)

)

v(x) = 0 , v(0) = 1, v′(0) = 0 ,

will vanish somewhere in (0, 1) if
∫ 1

0
(1 − x2) r(x)− dx <

∫ 1

0
(1 − x2) r(x)+ dx .
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